Enzymatic properties of a novel liquefying alpha-amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequences.
نویسندگان
چکیده
A novel liquefying alpha-amylase (LAMY) was found in cultures of an alkaliphilic Bacillus isolate, KSM-1378. The specific activity of purified LAMY was approximately 5,000 U mg of protein-1, a value two- to fivefold greater between pH 5 and 10 than that of an industrial, thermostable Bacillus licheniformis enzyme. The enzyme had a pH optimum of 8.0 to 8.5 and displayed maximum activity at 55 degreesC. The molecular mass deduced from sodium dodecyl sulfate-polyacrylamide gel electrophoresis was approximately 53 kDa, and the apparent isoelectric point was around pH 9. This enzyme efficiently hydrolyzed various carbohydrates to yield maltotriose, maltopentaose, maltohexaose, and maltose as major end products after completion of the reaction. Maltooligosaccharides in the maltose-to-maltopentaose range were unhydrolyzable by the enzyme. The structural gene for LAMY contained a single open reading frame 1, 548 bp in length, corresponding to 516 amino acids that included a signal peptide of 31 amino acids. The calculated molecular mass of the extracellular mature enzyme was 55,391 Da. LAMY exhibited relatively low amino acid identity to other liquefying amylases, such as the enzymes from B. licheniformis (68.9%), Bacillus amyloliquefaciens (66.7%), and Bacillus stearothermophilus (68.6%). The four conserved regions, designated I, II, III, and IV, and the putative catalytic triad were found in the deduced amino acid sequence of LAMY. Essentially, the sequence of LAMY was consistent with the tertiary structures of reported amylolytic enzymes, which are composed of domains A, B, and C and which include the well-known (alpha/beta)8 barrel motif in domain A.
منابع مشابه
Purification and Characterization of a Novel Thermostable and Acid Stable α-Amylase from Bacillus Sp. Iranian S1
This study reports the purification and biochemical characterization of thermostable and acidic-pH-stable α-amylase from Bacillus sp. Iranian S1 isolated from the desert soil (Gandom-e-Beryan in Lut desert, Iran). Amylase production was found to be growth associated. Maximum enzyme production was in exponential phase with activity 2.93 U ml-1 at 50°C and pH 5. The enzyme was purified by isoprop...
متن کاملA New Enzymatic Method for Rapid Diagnosis of Phenylketonuria Using Alkaliphilic Bacillus
Rapid and in time diagnosis of phenylketonuria (PKU) in affected infants can help preventing the progress of mental and developmental disorders associated with the disease. Here we report the isolation of alkaliphilic Bacillus bacteria capable of producing high level of Phenylalanine dehydrogenase (PheDH) from soil. A new quantitative and rapid test for PKU diagnosis was then developed using th...
متن کاملNovel alpha-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38.
A novel alpha-amylase (AmyK38) was found in cultures of an alkaliphilic Bacillus isolate designated KSM-K38. Based on the morphological and physiological characteristics and phylogenetic position as determined by 16S ribosomal DNA gene sequencing and DNA-DNA reassociation analysis, it was suggested that the isolate was a new species of the genus Bacillus. The enzyme had an optimal pH of 8.0 to ...
متن کاملIdentification of Novel Mutations in IL-2 Gene in Khorasan Native Fowls
The intron-exon structure of Khorasan native fowl interleukin-2 (IL-2) was investigated. For this purpose, twenty chickens were selected from the Native Fowl Breeding Station of Khorasan province, and genomic DNA was extracted using a modified conventional DNA extraction protocol. An 875 bp fragment of IL-2 was successfully amplified, including a small part of the promoter, exon 1, intron 1, an...
متن کاملBacillus stearothermophilus neopullulanase selective hydrolysis of amylose to maltose in the presence of amylopectin.
The specificity of Bacillus stearothermophilus TRS40 neopullulanase toward amylose and amylopectin was analyzed. Although this neopullulanase completely hydrolyzed amylose to produce maltose as the main product, it scarcely hydrolyzed amylopectin. The molecular mass of amylopectin was decreased by only one order of magnitude, from approximately 10(8) to 10(7) Da. Furthermore, this neopullulanas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 64 9 شماره
صفحات -
تاریخ انتشار 1998